1,482 research outputs found

    Enhanced charge storage of nanometric ζ-V₂O₅ in Mg electrolytes

    Get PDF
    V2O5 is of interest as a Mg intercalation electrode material for Mg batteries, both in its thermodynamically stable layered polymorph (α-V2O5) and in its metastable tunnel structure (ζ-V2O5). However, such oxide cathodes typically display poor Mg insertion/removal kinetics, with large voltage hysteresis. Herein, we report the synthesis and evaluation of nanosized (ca. 100 nm) ζ-V2O5 in Mg-ion cells, which displays significantly enhanced electrochemical kinetics compared to microsized ζ-V2O5. This effect results in a significant boost in stable discharge capacity (130 mA h g−1) compared to bulk ζ-V2O5 (70 mA h g−1), with reduced voltage hysteresis (1.0 V compared to 1.4 V). This study reveals significant advancements in the use of ζ-V2O5 for Mg-based energy storage and yields a better understanding of the kinetic limiting factors for reversible magnesiation reactions into such phases

    Climate projections and their impact on policy and practice

    Full text link
    This article examines the relationship between projections of climate change and the responses to those projections. First, it discusses uncertainty and its role in shaping not only the production of climate projections but also the use of these projections by decision makers. We find that uncertainty critically affects the way climate projections move from useful to usable, where usefulness is defined by scientists' perception of users' needs, and usability is defined by users' perception of what knowledge can be readily applied to their decision. From the point of view of the natural scientist, we pose that there is an uncertainty fallacy, that is, a belief that the systematic reduction of uncertainty in climate projections is required in order for the projections to be used by decision makers. Second, we explore the implications of climate projections for policy and decision making, using examples from the seasonal climate forecast applications literature as an analog. We examine constraints and opportunities for their application in policy and practice and find that over-reliance on science and technical solutions might crowd out the moral imperative to do what is needed to improve livelihoods and to guarantee ecosystems' long-term sustainability. We conclude that, in the context of high uncertainty, decision makers should not look for ‘perfect’ forecasts, but seek to implement knowledge systems that integrate climate projections with other kinds of knowledge and that consider the multiple stressors that shape their decision environment. Copyright © 2010 John Wiley & Sons, Ltd. For further resources related to this article, please visit the WIREs websitePeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/78059/1/71_ftp.pd

    Cloning of a Novel Protein Interacting with BRS-3 and Its Effects in Wound Repair of Bronchial Epithelial Cells

    Get PDF
    Bombesin receptor subtype 3 (BRS-3), the orphan bombesin receptor, may play a role in the regulation of stress responses in lung and airway epithelia. Bombesin receptor activated protein (BRAP )is a novel protein we found in our previous study which interacts with BRS-3. This study was designed to observe the subcellular location and wound repair function of BRAP in human bronchial epithelial cells (HBECs). BRAP ORF was amplified by RT-PCR and ligated to pEGFP-C1 vector, and then the recombinant plasmid pEGFP-C1-BRAP was transfected into Hela cells. The location of BRAP protein was observed by laser confocal microscope, and the expression of it was analyzed by Western-blot. At the same time,we built the recombinant plasmid pcDNA3.1(+)-BRAP, transfected it into HBECs and observed its impact on cell cycle and wound repair of HBECs. The results showed that BRAP locates in membrane and cytoplasm and increases significantly in transfected cells. Flow cytometry results demonstrated that the recombinant plasmid increases S phase plus G2 phase of cell cycle by 25%. Microscopic video analysis system showed that the repair index of wounded HBECs increases by 20% through stable expression of BRAP. The present study demonstrated that BRAP locates in the membrane and cytoplasm, suggesting that this protein is a cytoplasm protein, which promotes cell cycle and wound repair of HBECs

    Generation of a large volume of clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles for cell culture studies.

    Get PDF
    It has recently been shown that the wear of ultra-high-molecular-weight polyethylene in hip and knee prostheses leads to the generation of nanometre-sized particles, in addition to micron-sized particles. The biological activity of nanometre-sized ultra-high-molecular-weight polyethylene wear particles has not, however, previously been studied due to difficulties in generating sufficient volumes of nanometre-sized ultra-high-molecular-weight polyethylene wear particles suitable for cell culture studies. In this study, wear simulation methods were investigated to generate a large volume of endotoxin-free clinically relevant nanometre-sized ultra-high-molecular-weight polyethylene wear particles. Both single-station and six-station multidirectional pin-on-plate wear simulators were used to generate ultra-high-molecular-weight polyethylene wear particles under sterile and non-sterile conditions. Microbial contamination and endotoxin levels in the lubricants were determined. The results indicated that microbial contamination was absent and endotoxin levels were low and within acceptable limits for the pharmaceutical industry, when a six-station pin-on-plate wear simulator was used to generate ultra-high-molecular-weight polyethylene wear particles in a non-sterile environment. Different pore-sized polycarbonate filters were investigated to isolate nanometre-sized ultra-high-molecular-weight polyethylene wear particles from the wear test lubricants. The use of the filter sequence of 10, 1, 0.1, 0.1 and 0.015 µm pore sizes allowed successful isolation of ultra-high-molecular-weight polyethylene wear particles with a size range of < 100 nm, which was suitable for cell culture studies

    Mesenchymal cell survival in airway and interstitial pulmonary fibrosis

    Get PDF
    Fibrotic reactions in the airways of the lung or the pulmonary interstitium are a common pathologic outcome after exposure to a wide variety of toxic agents, including metals, particles or fibers. The survival of mesenchymal cells (fibroblasts and myofibroblasts) is a key factor in determining whether a fibroproliferative response that occurs after toxic injury to the lung will ultimately resolve or progress to a pathologic state. Several polypeptide growth factors, including members of the platelet-derived growth factor (PDGF) family and the epidermal growth factor (EGF) family, are prosurvival factors that stimulate a replicative and migratory mesenchymal cell phenotype during the early stages of lung fibrogenesis. This replicative phenotype can progress to a matrix synthetic phenotype in the presence of transforming growth factor-β1 (TGF-β1). The resolution of a fibrotic response requires growth arrest and apoptosis of mesenchymal cells, whereas progressive chronic fibrosis has been associated with mesenchymal cell resistance to apoptosis. Mesenchymal cell survival or apoptosis is further influenced by cytokines secreted during Th1 inflammation (e.g., IFN-γ) or Th2 inflammation (e.g., IL-13) that modulate the expression of growth factor activity through the STAT family of transcription factors. Understanding the mechanisms that regulate the survival or death of mesenchymal cells is central to ultimately developing therapeutic strategies for lung fibrosis

    Seeking legitimacy through CSR: Institutional Pressures and Corporate Responses of Multinationals in Sri Lanka

    Get PDF
    Arguably, the corporate social responsibility (CSR) practices of multinational enterprises (MNEs) are influenced by a wide range of both internal and external factors. Perhaps most critical among the exogenous forces operating on MNEs are those exerted by state and other key institutional actors in host countries. Crucially, academic research conducted to date offers little data about how MNEs use their CSR activities to strategically manage their relationship with those actors in order to gain legitimisation advantages in host countries. This paper addresses that gap by exploring interactions between external institutional pressures and firm-level CSR activities, which take the form of community initiatives, to examine how MNEs develop their legitimacy-seeking policies and practices. In focusing on a developing country, Sri Lanka, this paper provides valuable insights into how MNEs instrumentally utilise community initiatives in a country where relationship-building with governmental and other powerful non-governmental actors can be vitally important for the long-term viability of the business. Drawing on neo-institutional theory and CSR literature, this paper examines and contributes to the embryonic but emerging debate about the instrumental and political implications of CSR. The evidence presented and discussed here reveals the extent to which, and the reasons why, MNEs engage in complex legitimacy-seeking relationships with Sri Lankan institutions

    Implementation of a workplace smoking ban in bars: The limits of local discretion

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In January 1998, the California state legislature extended a workplace smoking ban to bars. The purpose of this study was to explore the conditions that facilitate or hinder compliance with a smoking ban in bars.</p> <p>Methods</p> <p>We studied the implementation of the smoking ban in bars by interviewing three sets of policy participants: bar employers responsible for complying with the law; local government officials responsible for enforcing the law; and tobacco control activists who facilitated implementation. We transcribed the interviews and did a qualitative analysis of the text.</p> <p>Results</p> <p>The conditions that facilitated bar owners' compliance with a smoking ban in bars included: if the cost to comply was minimal; if the bars with which they were in competition were in compliance with the smoking ban; and if there was authoritative, consistent, coordinated, and uniform enforcement. Conversely, the conditions that hindered compliance included: if the law had minimal sanctions; if competing bars in the area allowed smoking; and if enforcement was delayed or inadequate.</p> <p>Conclusion</p> <p>Many local enforcers wished to forfeit their local discretion and believed the workplace smoking ban in bars would be best implemented by a state agency. The potential implication of this study is that, given the complex nature of local politics, smoking bans in bars are best implemented at a broader provincial or national level.</p

    Ultrasound-triggered therapeutic microbubbles enhance the efficacy of cytotoxic drugs by increasing circulation and tumor drug accumulation and limiting bioavailability and toxicity in normal tissues

    Get PDF
    Most cancer patients receive chemotherapy at some stage of their treatment which makes improving the efficacy of cytotoxic drugs an ongoing and important goal. Despite large numbers of potent anti-cancer agents being developed, a major obstacle to clinical translation remains the inability to deliver therapeutic doses to a tumor without causing intolerable side effects. To address this problem, there has been intense interest in nanoformulations and targeted delivery to improve cancer outcomes. The aim of this work was to demonstrate how vascular endothelial growth factor receptor 2 (VEGFR2)-targeted, ultrasound-triggered delivery with therapeutic microbubbles (thMBs) could improve the therapeutic range of cytotoxic drugs. Methods: Using a microfluidic microbubble production platform, we generated thMBs comprising VEGFR2-targeted microbubbles with attached liposomal payloads for localised ultrasound-triggered delivery of irinotecan and SN38 in mouse models of colorectal cancer. Intravenous injection into tumor-bearing mice was used to examine targeting efficiency and tumor pharmacodynamics. High-frequency ultrasound and bioluminescent imaging were used to visualise microbubbles in real-time. Tandem mass spectrometry (LC-MS/MS) was used to quantitate intratumoral drug delivery and tissue biodistribution. Finally, 89Zr PET radiotracing was used to compare biodistribution and tumor accumulation of ultrasound-triggered SN38 thMBs with VEGFR2-targeted SN38 liposomes alone. Results: ThMBs specifically bound VEGFR2 in vitro and significantly improved tumor responses to low dose irinotecan and SN38 in human colorectal cancer xenografts. An ultrasound trigger was essential to achieve the selective effects of thMBs as without it, thMBs failed to extend intratumoral drug delivery or demonstrate enhanced tumor responses. Sensitive LC-MS/MS quantification of drugs and their metabolites demonstrated that thMBs extended drug exposure in tumors but limited exposure in healthy tissues, not exposed to ultrasound, by persistent encapsulation of drug prior to elimination. 89Zr PET radiotracing showed that the percentage injected dose in tumors achieved with thMBs was twice that of VEGFR2-targeted SN38 liposomes alone. Conclusions: thMBs provide a generic platform for the targeted, ultrasound-triggered delivery of cytotoxic drugs by enhancing tumor responses to low dose drug delivery via combined effects on circulation, tumor drug accumulation and exposure and altered metabolism in normal tissues
    • …
    corecore